
MyCloud – Supporting User-Configured Privacy Protection
in Cloud Computing

Min Li
Virginia Commonwealth

University
lim4@vcu.edu

Wanyu Zang
Virginia Commonwealth

University
wzang@vcu.edu

Kun Bai
IBM T.J. Watson Research

Center
kunbai@us.ibm.com

Meng Yu
Virginia Commonwealth

University
myu@vcu.edu

Peng Liu
Pennsylvania State University,

University Park
pliu@ist.psu.edu

ABSTRACT
Privacy concern is still one of the major issues that prevent users from
moving to public clouds. The root cause of the privacy problem is
that the cloud provider has more privileges than it is necessary, which
leaves no options for the cloud users to protect their privacy. Due
to the same problem, once the control virtual machine or the cloud
platform is compromised, all user’s privacy will be breached. Many
cryptographic solutions have been developed to protect sensitive data
in the cloud. However, arbitrary processing is usually prohibited once
cryptography is used. Homomorphic cryptography is considered promis-
ing but it does not offer practical performance at the current stage.
Instead of cryptographic solutions, in this paper, we propose a new

cloud architecture - MyCloud to solve the problem. MyCloud re-
moves the control virtual machine (control VM) from the processor’s
root mode and only keeps security and performance crucial compo-
nents in the TCB. MyCloud achieves the following security goals.
First, MyCloud de-privileges the cloud provider such that the cloud
provider cannot inspect users’ memory through the control virtual ma-
chine. Second, MyCloud enables user configured privacy protection.
Third, the reduced the TCB size also minimizes the attack surface of
the cloud platform. We implemented a prototype system with∼5.8K
LOCs on x86 architecture. According to our experimental results, our
platform shows acceptable overhead while providing significantly en-
hanced security and privacy protection that can be configured by users.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.4.7 [Operating
Systems]: Organization andDesign; D.4.8 [Operating Systems]: Per-
formance

General Terms
Design, Security, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’13 Dec. 9-13, 2013, New Orleans, Louisiana USA
Copyright 2013 ACM 978-1-4503-2015-3/13/12 ...$15.00.
http://dx.doi.org/10.1145/2523649.2523680

Keywords
Virtualization, TCB Minimization, Decomposition, Isolation

1. INTRODUCTION
Cloud computing attracts more and more traditional companies due

to its flexibility and cost-effectiveness. However, privacy concerns
are preventing many users, especially government and military users,
frommoving to cloud computing environments. In current cloud com-
puting platforms like Xen [59], KVM [38], and VMware [55], a cloud
provider owns the Virtual Machine Monitor (VMM) and an adminis-
trative domain Dom0 (the control virtual machine, control VM) to do
cloud management. Thus, the cloud provider has full privileges over
the whole platform.
Unfortunately, under such an architecture, the cloud users have no

control over their privacy protection. Even worse, they cannot even
access the contents they own under some circumstances. For example,
cloud users of Amazon EC2 [21] cannot dump VM memory because
the operation is not allowed according to Amazon’s policy.
While cryptography can be used to protect user’s confidentiality in

the cloud, however, this would disable arbitrary processing. Currently,
only homomorphic encryption [11] allows arbitrary processing but it
does not offer practical performance solution yet.
A possible solution to the privacy protection problem is to com-

pletely remove the service provider’s privileges on accessing users’
space and only keep necessary privileges needed for cloud manage-
ment, such as creation and migration of VMs. However, such de-
sign will also disable the cloud provider’s ability to perform Virtual
Machine Introspection (VMI) and its applications [24, 20]. Conse-
quently, the service provider has no way to monitor any part of the
users’ VMs. In many situations, the service provider needs to run
anti-virus or anti-spamware software over the user’s active VMs.
The challenging privacy protection problem is caused not only by

the difficulties of cloud architecture design, but also the mutual dis-
trust and conflict of interest between the service provider and clients [47].
On one hand, the cloud providers are motivated to monitor client VMs
in order to make sure that clients will not use cloud resources to launch
illegal services or breach privacy of other clients [7] that could dam-
age the cloud providers’ reputation [39]. For example, a lot of spam
emails were sent from IP addresses belonging to Amazon’s EC2 ser-
vice [37]. On the other hand, client users aremore andmore concerned
about privilege misuse by cloud administrators. For example, an em-
ployee of a cloud provider may disclose the client’s privacy in order
to seek personal gains [36].
As part of the efforts to solve the above problems, recent work

Self-Service Cloud computing (SSC) [12] separates the privileges of
Dom0 into multiple domains, user domains and an MTSD domain.
The MTSD domain checks regulatory compliances mutually agreed
upon the cloud provider and the clients. In SSC design, clients have
privileges to protect their privacy from service providers. However,
the Trusted Computing Base (TCB) of SSC is too large to be secure.
Current virtualization architecture includes a privileged domain,

Dom0, in the cloud TCB. Usually, a complete operating system runs
in Dom0 in order to support user level software. Dom0 maintains a
lot of complex hardware drivers that are developed by different ven-
dors. It is currently not affordable to formally verify the security of all
these software components. And there are many possible vulnerabili-
ties that can compromise the TCB. For example, an adversary can ex-
ploit client privacy information via vulnerability from OS, drivers, or
other software components [15, 19, 17]. Furthermore, current VMM
designs are vulnerable tomany known attacks [22, 35, 57, 48, 49]. The
attackers can also utilize console interface provided by cloud provider
to compromise the cloud platform [18, 16]. An effective approach to
solve the problem is to significantly reduce the TCB size and reduce
the attack surface.
In this paper, we propose a new architecture design, MyCloud, to

address the problems. MyCloud allows clients to configure privacy
protection and prevents service providers from tampering with users’
privacy settings. Moreover, in MyCloud design, we reduce the cloud
TCB by an order of magnitude (our prototype has ∼ 5.8K LOCs). In
MyCloud design, we remove the control VM from the TCB and the
control VM is no more privileged than any other guest VMs. My-
Cloud can provide bilateral benefits to the cloud providers and the
cloud users. Due to the small TCB size of MyCloud, it becomes prac-
tical for the cloud providers to verify the integrity of the hypervisor.
Meanwhile, the cloud users are able to protect their privacy with the
assigned privileges.

• We propose a new virtualization architecture, MyCloud, to sup-
port user-configured privacy protection. MyCloud uses the sep-
aration of privileges design where the cloud provider does not
have privileges to breach users’ privacy.

• We minimize the TCB of MyCloud by removing the control
VM from the root mode of the processor.

• We implement a prototype of MyCloud on x86 platform, which
has acceptable performance overhead but much stronger secu-
rity protections.

• We believe that so far MyCloud has the smallest TCB that sup-
ports user configurable privacy protection in cloud computing.

The organization of this paper is as follows. Related work is dis-
cussed in Section 2. In Section 3, we describe the threat model, discuss
the design goals, and provide an overview of our approach. In Sec-
tion 4 and Section 5, we present the implementation and performance
evaluations. We provide security analysis and discussions in Section 6
and 7 respectively. Finally, we conclude the paper in Section 8.

2. RELATED WORK
When the cloud provider has full privileges over the VMM and

users’ VMs, there is no way that cloud users can protect their privacy.
The first step to enable privacy protection in virtualization architecture
design is to design the separation of privileges.
To address the threats from the administrative domain, previous

work was tried to disaggregate privileges functionality of Dom0 into
separated client VMs [12, 44] or split VMM into two components [46].
In [44], the domain builder, which is part of the important privileged

components is moved out of the service domain into a small TCB.
Conceptually, the most similar work to ours is Self-Service Cloud
computing (SSC) [12]. SSC allows client VMs to execute some man-
agement of privileges, which used to be provided in administrative
domain such as to access VM’s memory, execute CPUID instruction,
etc,.
However, in theseworks, the TCBs are notminimized because all of

them consider a full functional hypervisor as part of the TCB. SplitVi-
sor [46] splits VMM into two parts according to their functions: a
smaller one regarded as minimized TCB in order to enforce isolation
and a larger one to provide rich service functionality. Nevertheless, in
SplitVisor design, clients have to upload a specialized guest VMM.
Hence, the design is not compatible with current cloud computing
schemes such as Amazon EC2.
Similar to SplitVisor, recent work also investigates the uses of nested

virtualization to disaggregate some host VMMcomponents to the guest
VMM [60, 56, 8]. CloudVisor [60] uses nested virutalization to sep-
arate the hypervisor from the computing software stacks. It enforces
strong isolation through a small host hypervisor below a guest hy-
pervisor. However, it does not allow user-configured privacy protec-
tion. Also, performance loss may increase exponentially with nesting
depth [31]. Xen-Blanket [56] allows users to build their own business
by launching VMs on a guest VMM. However, the service provider
still has full control over the host VMM. In such a case, a service
provider has the ability to breach the client’s privacy. Thus, clients
cannot prevent the cloud administrators from accessing the client’s
privacy.
Besides the above architectural improvement attempts, there are

many other researches [13] on encrypting client’s sensitive data and
the encryption algorithms do not rely on the offer of service providers.
Employees from the service provider cannot decrypt data without a
user’s private key. However, during computation encrypted data should
be decrypted into plain text in memory. In other words, this work is
not suitable for supporting arbitrary computing such as a full guest
VM. Also, encryption and decryption will consume a lot computing
resources.
Given the above efforts in separation of privileges design, there are

also a lot of previous efforts to minimize the TCB of cloud platform,
which is also one of our design goals. In order to minimize the size
of TCB (VMM and dom 0), NOVA [52, 25] constructs a microker-
nel based VMM including ∼ 9K LOCs. Despite its thin TCB com-
pared with commodity hypervisors, the complexity of the TCB is not
markedly decreased since the microhypervisor still needs to manage
complex duties, such as address space allocation, interrupt and ex-
ception handling. Therefore, the thin TCB is still difficult to verify
dynamically. Although seL4 [33] proposes a technique to verify a
microkernel with ∼8.7K LOCs, this method sacrifices functionality
and usability.
At the same time, many researches have focused on removing the

unnecessary virtualization component. MAVMM [45] and Trustvi-
sor [40] are customized VMMwith minimized TCB. The size of TCB
is quite small (MVMM contains ∼ 3.2K LOCs and Trustvisor has ∼
2K LOCs for core functions), they can only handle specific scheme
and neither of them supports multiple VMs. In conclusion, these ar-
chitectures are not suitable for serving commodity VMs.
Hardware vendors, like Intel and AMD, are willing to provide hard-

ware features to minimize TCB size. These features include system
management mode (SMM) [29] and Trusted Execution Technology
(TXT) [26]. SICE [6] utilize x86 SMM to isolate the TCB. The se-
curity of isolated environment is guaranteed by the TCB including
hardware, BIOS and SMM program of∼ 300 LOCs. However, SICE
only supports one VM so it will not be compatible with any cloud
platform. Flicker [41] is also considered a privacy protection solution

based on CPU features [26]. Unfortunately, it only offers application
level protection and is not a general solution for VMs in cloud.
NoHype [32, 53] dynamically eliminates VMM layer in order to

narrow the hypervisor attack surface. Nonetheless, the disadvantage
of NoHype is that it requires one-VM-per-core on multi-core proces-
sors and pre-allocated nested page table. The two requirements restrict
the number of VMs that can be simultaneously hosted on the physical
platform and decrease the elasticity. Coreboot [14, 9] is a promising
way for the TCB minimization. It replaces the BIOS firmware with
lightweight system designed to perform minimum of initializing tasks
and directly boot ELF image in ROM. However, coorboot has no vir-
tualization component design in mind.
Compared with the above work, MyCloud design reduces the TCB

size by removing the control VM from the TCB. In MyCloud de-
sign, a cloud provider can only launch a de-privileged VM in order to
do cloud management rather than have full privileges over the whole
cloud platform. Thus, both separation of privileges and minimization
of the TCB are achieved.
Unlike some researchers who reduce the privileges of cloud providers

by extending the architecture of cloud operating system (e.g. Open-
Stack) [10], MyCloud minimizes cloud provider’s privileges on the
cloud hypervisor which is located lower than cloud operating system.
Therefore, MyCloud is more secure because the TCB size is much
smaller. Additionally, cloud operating systems work based on the sup-
port of cloud hypervisors (e.g. Xen and KVM), which may contain a
lot of vulnerabilities.
Data-Protection-as-a-Service (DPaaS)model [51] is a verifiable plat-

form that can protect data integrity, control users access, allow users
to audit the strength of data encryption, secure execution isolation and
trusted platform module (TPM). MyCloud can manage users access
and protect users data by relying on hardware (CPU and mainboard)
security features and TPM.

3. OVERVIEW

3.1 Threat Model and Assumptions
Similar to the adversarymodel assumed in SSC [12], we distinguish

service providers from system administrators. Normally, well-known
enterprises such as Amazon and Microsoft are interested in protecting
client’s privacy rather than revealing or snooping on users’ privacy,
which protects their reputation of running cloud business. Thus, we
assume that a service provider has nomotivation or intention to breach
users’ privacy in the cloud or launch any physical attacks like mem-
ory bus tapping. Therefore, physical attacks such as [5] or protection
against other hardware attacks are out of the scope of this paper. The
physical attack requires special tools and definitely leaves some evi-
dence physically.
On the contrary, system administrators who are employed by ser-

vices providers, may have opportunities and motivation to filch user’s
data for pursuing monetary benefits. Even if a system administrator is
benign, he may make mistakes by accident and cause privacy breach.
Therefore, system administrators are considered adversarial.
In MyCloud design, we assume that we can utilize the Trusted Plat-

form Module (TPM) equipped in hardware to measure the integrity
of crucial components in TCB. Also, since the System Management
Mode (SMM) of processors has already been protected from cache-
poisoning attacks [58], we do not consider this type of attacks either.
Similarly, on Intel platform, a proper configuration of the System
Management Range Register (SMRR) is required to ensure this as-
sumption.
Note that in this paper, we do not try to derive which part of memory

should be protected in order to protect a data item at high abstraction
level, such as a social security number. This is out of the scope of this

paper. We provide protection mechanisms at the VMM level but it is
up to the guest VM, which regions of memory should be protected.
In this paper, we assume that the swap area of the guest VMs is

turned off or the swapped pages are encrypted in order to protect the
guest VM space. For example, this can be achieved by using swapctl,
swapoff, and/or encryption tools in Linux. Thus, the guest VM’s pri-
vacy will not be compromised when part of the memory is swapped
out to the disks.

3.2 TCB Integrity Measurement
The Root of Trust Measurement (RTM) mechanism is commonly

used to ensure the integrity of TCB, whichmainly relies on the Trusted
Platform Module (TPM) chip. Specified by the Trusted Computing
Group (TCG), the TPM chip can be used to authenticate hardware de-
vices [54]. It can be found on almost all the motherboards of servers
and high-end PCs. A unique and secret RSA Endorsement Key (EK)
is generated for each TPM at the time of manufacture and will be per-
manently sealed inside the chip, and other sensitive data will be stored
into shielded memory. A Privacy CA (Certificate Agency) can au-
thenticate a TPM according to its public Endorsement Key. The main
role of TPM chips in trusted computing is to act as the Core Root of
Trust for Measurement (CRTM), which measures the integrity metrics
of modules, holds them in Platform Configuration Registers (PCRs),
and reports them in an authenticated way in remote attestation. For
privacy concerns, EK is not allowed to be used as platform identity
directly. Instead, Application Identity Keys (AIKs) are created to sign
these PCR values. A detailed example to establish TCBwith TPM can
be found in Terra model [23]. Note that RTM can be either Static or
Dynamic (SRTM and DRTM, respectively) [26].

3.3 Design Goals
One principle of MyCloud design is to provide privacy protection

mechanism but not the policy themselves. More specifically, the pri-
mary goal of MyCloud is to enable configurable privacy protection by
1) allowing users to build their own Access Control Matrices (ACM)
in the TCB; and 2) reducing the TCB size to be more secure. The
detailed design considerations are listed below.

Users-Configured Privacy Protection.
By default, the control VM has no access permission to any of the

guest VM unless the guest VM grants the permission. In other words,
once the cloud provider allocates the memory resource to run a user’s
VM, the cloud provide will lose access permissions to the user’s VM
space, unless the user explicitly authorizes accesses. By default, no
access permission is granted to the cloud provider.
An interesting argument will be whether the cloud provider should

have right to get the resource back from a particular VM in order to
protect the platform against DoS attacks. Either solution (allow or
not) can be supported by our design through the configuration of the
ACM in the VMM, depending on the cloud provider’s Service Level
Agreement (SLA).

TCB Minimization.
The large size and high complexity of security-sensitive applica-

tions and systems software are primary causes of poor testability and
high vulnerability [50]. Hence the TCB size of the cloud architecture
withMyCloud should be as small as possible. However, a small/simple
TCB is not sufficient. There should be a strong protection mechanism
to enforce the security of the TCB. Formal analysis [34] is usually
used to verify the TCB correctness and security properties, and soft-
waremodel checking [30] can be utilized to verify the implementation.
There are also approaches utilizing hardware based dynamic measure-
ment to secure TCB, like TrustVisor [40] and Flicker [41] . All the

Host Linux
 Kernel KVM

Root Mode

Ring 1

Non-Root Mode

Ring 3QEMU

Driver

Ring 0
Guest VM
 Kernel

Host App

Guest App Ring 3

Guest VM
 Kernel

Guest App

Dom0 App

Dom0
Kernel

XENRing 0

Guest VM Guest VM

Control VM

Control VM

Driver

Figure 1: KVM (left) and Xen (right) architectures. Components of
the TCB of each architecture are shown in pink color (or shadow).

above protection mechanisms, however, have restrictions on the TCB
size. For example the recent successful report of formal verification
shows the capability of a general-purpose kernel with ∼8.7K LOCs
[34]. Therefore, we need to control the TCB size by including only
security related or crucial functionalities.

Weakening the Cloud Provider’s Power.
In order to alleviate the concerns of privacy leakage to cloud provider’s

internal employees, the over-powerfulness of cloud providers should
be dealt with. In the current cloud architecture, Xen [59] for example,
the cloud provider occupies the most privileged domain and handles
all the operations with the authority to look into users’ data and com-
putation. In MyCloud based architecture, the power of cloud provider
should be limited, as long as it can normally perform cloud resources
management (allocation, revoking and migration).

VM Level Isolation.
We choose the isolation granularity at the VM level. First, most of

the current commercial public clouds provide the service in the IaaS
fashion (e.g. Amazon EC2 [21]). Second, VM is a native and sim-
ple abstraction/encapsulation of privacy for each cloud user. Unlike
protecting processes, protecting VMs does not require handling the
complex and subtle semantic gaps. And third, protection at the VM
level is more likely to preserve backward-compatibility, without the
need of modifying OS kernels and applications.

3.4 Architecture
Intel processors support virtualization extension throughVMX [29],

and AMD processors use SVM [4]. Once the virtualization extension
is enabled by processor, CPU will have two modes - root and non-
root. In each mode, there are four privileged levels from ring 0 to ring
3 where ring 0 has the highest privilege level. A standalone operating
system usually runs the kernel in ring 0 and applications in ring 3.
The VMM, running in the root mode, can specify what should be

trapped and handled by VMM, such as EPT exceptions, page faults,
timers, etc. When those privileged operations are run by a guest op-
erating system in non-root mode, it will trigger mode transition to
the root mode with a VMEXIT. After those priveleged operations
are handled, VMM will enter guest operating system again through
a VMENTRY. Note that the handling of those operations in VMM
is transparent to guest VMs. There is a VMCS structure, including
both the host status and the guest status, for each VM when VMEXIT
(VMENTRY) happens to record (recover) the running context of the
VM.
Figure 1 shows the architectures of both KVM and Xen. In both

architectural designs, the host operating system (control VM) does
not have a separate VMCS for virtual machine context switching so it

Control VM

MyCloud Lightweight
VCPU Scheduler

Kernel

Access Control
 Matrix

Management Tools

Kernel

Applications

Guest VM

Non-Root Mode

Root Mode

Ring 0

Ring 3

Ring 0
Memory
Isolation

Figure 2: MyCloud architecture. Components of the TCB are shown
in pink color (or shadow).

runs in the root mode. As the results, the host operating system has all
privileges that the processor’s root mode has. Therefore, the TCB
of both designs includes the whole control VM (the host operating
system).
Moreover, since the control VM is in the root mode, the control

VM is able to manipulate the VMCS structures of all guest VMs, also
the page tables of all other VMs. Under such designs, it is impossible
to protect any guest VM from the control VM. Virtual machine intro-
spection, e.g., using XenAccess [2], can be done in the control VM.
Thus, no privacy protection can be achieved.
Figure 2 shows the architecture of MyCloud. In MyCloud, only the

VMM runs in the root mode and VMM keeps security related func-
tionalities in the TCB. In our design, the scheduler is a timer triggered
pre-emptive scheduler against DoS attacks from any VM running on
the platform. Memory isolation is also enforced by the VMM. In Sec-
tion 4.2, we describe how memory isolation and devices are handled
in MyCloud architecture.
In MyCloud design, there is no operating system running in the

processor’s rootmode. Therefore, noVM, including the control VM,
is more privileged than others, or can manipulate any others. The
access permission is specified by an Access Control Matrix (ACM)
in the VMM, following a separation of privilege design as described
in Section 4.1. According to the ACM, the control VM can access
a guest VM’s space if and only if the guest VM explicitly grants the
permission.

4. IMPLEMENTATION

4.1 VM isolation and user-configured access
control

MyCould uses EPT tables to isolate VMs including the control VM.
If a VM tries to access any memory location out of its space, it will
trigger an EPT violation that causes a VMEXIT. Since the control
VMhas its own EPT andVMCS, it cannot access any other guest VMs
either. The control VM has access to a resource table in the VMM
about the current memory allocations. When creating a new VM, the
control VM initiates a hyper call to allocate memory for the guest VM.
The VMM handles the boot process of the new guest VM. By default,
no access permissions are granted to the control VM to access the new
guest VM space once the memory is allocated.
In MyCloud architecture as shown in Figure 2, the cloud provider

uses the control VM for cloud management. Our design completely
removes the control VM from the root mode and the cloud provider’s
privileges are specified in the ACM in the bottom layer in root mode.
Therefore, the platform has a de-priviledged domain for the cloud
provider.
The ACM, shown in Table 1, enables a user to choose what infor-

mation in the user’s VM space can be accessed by the cloud provider

Table 1: Access Control Matrix of MyCloud. (A-Allocation, M-Migration, D-Deallocation, H-Hyper Calls, R-Read, W-Write)

Components VMM Control VM VMi VMj ACMi ACMj

VMM Full Full Full Full Full Full
Control VM H Full A/M/D/ACMi A/M/D/ACMj R R
VMi H Full ACMj R/W
VMj H ACMi Full R/W

VMA

VMB

MyCloud

VMCLEAR A
VMPTRLD A

VMLAUNCH A

HyperCall
Configure ACM in
 the VMM

VMPTRLD A

VMCLEAR B
VMPTRLD B

VMLAUNCH B

Check access request
 against ACM

VMPTRLD B

HyperCall

Figure 3: The procedure for users to modify the ACM

or other VM domains. In the table, ACMi is the Access Control Matrix
of VMi. Note that the access permissions of our proposed architecture
are completely different from any of the existing cloud platforms, as
shown in the second row of the table. Actually by filling different
values into the second row of Table 1, we can get a full spectrum of
possible hypervisor designs. Most existing designs assign full priv-
ileges to the control VM, which causes security problems once the
control VM is compromised. Even worse, users have no privacy if
the control VM has full privileges.
According to the ACM, each user can modify the access permis-

sions to the user’s space. By default, all accesses by other users in-
cluding the service provider are prohibited. However, if the users
likes, they can grant access permissions to other users, or the cloud
provider to enable information sharing or virus-scan. Our access con-
trol mechanism protects a user’s sensitive information in the user’s
space.
Furthermore, all exiting technologies support page-level access con-

trol since violations are captured through page access related excep-
tions. In such design, a sensitive data itemwill be over-protected since
accesses to all other data on the same page will be trapped and prohib-
ited. To protect sensitive data items more accurately, we create addi-
tional data structures to draw the boundary between sensitive data and
non-sensitive data.
In MyCloud, ACMi of a guest VMi is implemented by a Access

Control List (ACL) that specifies memory regions, VM identifiers,
and access permissions. If a VM wants to access a memory region of
other VMs, e.g., doing Virtual Machine Introspection for virus scan,
theVM initiates a hyper call to request the operation. VMMwill check
the request against the ACL of the VM being visited. If the access
is permitted, the VMM will conduct the operation on behalf of the
requesting VM. Otherwise, the access will be denied.
Since the memory region can be specified at the byte level, our

protection provides byte-level access control. Also, because the pro-
tection is enforced in the procedure of a hypercall, it does not rely on
paging mechanisms or exception handling either. Thus, it does not
add overhead to EPT based protections.
Figure 3 shows a sequence of machine instruction level operations

on how the ACM is set and how one VM checks the access request
against the ACM. In the figure, through a hypercall, VMA modifies
ACMA about whether it wants to share anything with other VMs. Af-
ter VMB is scheduled, VMB sends a request through another hyper-

CPU (VMX/SVM)

Memory

Core0 Core1 Core2 NIC (SR-IOV)
iSCSI Disk

MMU

IOMMU

NIC0
NIC1

NIC2

Local Disk

nPT
GPA

HPA
NFS

Physical Address

DMA_PT

......

Device Address

HPA

DVA

DVA

Figure 4: Memory and I/O management in MyCloud.

call to access VMA’s memory space, e.g., reading VMA’s kernel data
structures. The request will be checked against ACMA by VMM to
determine if it should be granted.
Note that we do not need security keys for VMs to do the hypercall.

The VMM manages VM identifiers and VMCSs for all VMs. It is
impossible for one VMi to set up ACMj if i ̸= j.

4.2 Memory and Device Virtualization
Both Intel and AMD have extended two-layer address translation

to three-layer address translation (nested paging). The guest page ta-
ble (gPT) specified by CR3 register in guest VM is responsible for
translating guest virtual addresses (GVA) to guest physical addresses
(GPA). A new table called Extended Page Table (EPT) controlled by
the VMM is responsible for translating GPA tomachine frame number
(HPA). The address of EPT is specified by a VMCS field. As shown in
Figure 4, MyCloud maintains the EPT and MMU will automatically
translate guest physical address to machine address. Once set up, the
memory translation process will be automatically done by MMU and
no interaction with the virtualization software is necessary. The VMM
will only be called for EPT updating when a EPT violation exception
happens.
Besides memory translation, I/O management is another impor-

tant issue to consider. MyCloud fully makes use of the hardware
extensions for virtualization, including IOMMU (VTd [27] for Intel
and AMD-Vi [3] for AMD) and SR-IOV [28], to minimize the TCB
size. The input/output memory management unit (IOMMU) connects
a DMA-capable I/O bus to themainmemory. Like a traditionalMMU,
which translates CPU-visible virtual addresses to physical addresses,
the IOMMU takes care of mapping device-visible virtual addresses
(also called device addresses or I/O addresses in this context) to phys-
ical addresses. With the help of IOMMU, devices can be directly as-
signed to VMs. This kind of direct assignment of devices provides
very fast I/O and eliminates drivers from VMM. However, it prevents
the sharing of I/O devices. To solve this problem, peripheral devices
start to support SR-IOV to enable a Single Root Function to be ap-
peared as multiple separate physical devices, called virtual functions
(VFs). As shown in Figure 4, the Ethernet adaptor on MyCloud plat-
form is configured to appear in the PCI configuration space asmultiple
functions. The slave layer can assign different VFs to different VMs.

For a device that does not support virtualization, like hard drives,
there are two solutions. First, cloud users can mount iSCSI disks [43].
Second, MyCloud can redirect the disk I/O requests to the control VM,
who controls the local disk. However, this solution exposes users’ data
to cloud provider, so I/O encryption is required for it.

4.3 Scheduling
To simplify the system design, MyCloud currently supports two

scheduling algorithms, round-robin and simple fair-sharing. In the
case of round-robin, every VMCS is set to have a fixed amount of
timer expiration time before the VMENTRY. Timer expiration will
trigger a VMEXIT. In current round-robin method, we only consider
scheduling another VM when the timer expires. The drawback of this
method is that it lowers the overall CPU utilization if the VM does not
have a lot of things to do.
We also implement an algorithm close to fire-sharing that evaluates

more often on whether scheduling another VM to use the CPU upon
the number of VMEXITs, which will improve the CPU utilization.
The experimental results are discussed in Section 5.

4.4 Cloud Management
Unlike the traditional architectures, the cloud provider only controls

an unprivileged control VM in MyCloud design. The control VM is
responsible for resource management. The management work is indi-
rect and should be done through the interface provided by the VMM.
Any resource allocation change requested by the control VM will be
handled by the VMM.
Cloud users’ keymanagement is out of the scope of this paper while

a key system is necessary to ensure authentication and cloud platform
verification. We provide the following examples to explain that the
cloud management is possible with a pre-configured public key sys-
tem.
To create a VM, MyCloud will allocate the resources under the re-

quest from the control VM. The cloud user can remotely attest the
platform, and negotiate a session key with MyCloud. Afterwards the
cloud user can upload an image along with the hash value encrypted
by the session key. If MyCloud can successfully verify the image, it
will launch the VM until a destroy request is received.
If the resources allocated to a cloud user are expired or no longer

needed, MyCloud will destroy the data first, and then mark the re-
sources as free space to the control VM. There can be an argument
upon whether the control VM should be able to forcibly re-collect
guest VMs memory pages. If this is allowed, a compromised con-
trol VM may be a huge threat to the whole platform. Although My-
Cloud can clean all the content in the re-collected memory pages, the
effects due to missing pages would still leak side-channel information
to the control VM. However, if the forcible re-collection is not al-
lowed, cloud providers may have a lot of troubles if they are not will-
ing to continue providing service to some VMs. In such a situation, if
we want to satisfy the users’ desire of privacy, we must sacrifice the
power of the cloud providers. For example, we can disable forcible
re-collection of memory but keep charging the users who do not give
up the resources.
We are not trying to find out an ultimate solution to this argument.

How to make such decision is business policy related and it is simply
out of the scope of this paper. Our design simply supports either way
of decisions. Simply put, we provide security mechanisms but not
policies.
Since the control VM’s memory access is also restricted by the

ACM and any privileged CPU or I/O instructions will be captured
and checked by the VMM, it is impossible for cloud provider’s inter-
nal employees to launch insider-attacks.

MyCloud NOVA MAVMM Karma Xen KVM KVM−L4
0

100

200

300

400

500

600

C
od

e
Li

ne
s

of
 K

ey
 C

om
po

ne
nt

s
(K

LO
C

s)

Bootloader
Host VMM
Privileged OS Kernel
Guest VMM

Figure 5: TCB size comparison of some virtualization architectures.

5. EVALUATION
In our prototype implementation, the TCB size ofMyCloud is around

5.8K LOCs. The comparison of the TCB size with other virtualization
techniques is shown in Figure 5. MyCloud has the smallest TCB.
Our prototype is built on a hardware platform that has an Intel i7

2600 processor (with both Vt-x and Vt-d) running at 3.3Ghz, an Intel
DQ67SWMotherboard (Chip: Q67), 4 GBRAM, a 1 TB SATAHDD,
and an Intel e1000 ethernet controller. We use Ubuntu 10.04 LTS with
linux kernel 2.6.32 for the VM.
In order to evaluate the overheads of our platform, we compared

the following five configurations.

1. Run an OS on a bare metal machine, labelled as “No_virt” in
the figures.

2. Run MyCloud with only one VM, labelled as “One VM” in the
figures.

3. Run MyCloud with two VMs. The light-weight Round-Robin
scheduler will be triggered byVMXCPU timer and the schedul-
ing interval is 10ms, labelled as “10ms” in the figures.

4. Run MyCloud with two VMs. The light-weight Round-Robin
scheduler will be triggered byVMXCPU timer and the schedul-
ing interval is 20ms, labelled as “20ms” in the figures.

5. Run MyCloud with two VMs. The scheduling algorithm will
allow a busy VM to take more CPU time (95% CPU time) and
assign an idle VM less CPU time (around 5% CPU time), la-
belled as “Fair Share” in the figures.

CPU Computing Performance.
The results of CPU operations, 32 bit integers, 64 bit integers, float

numbers, and doubles are shown in Figure 6. The enabling of two
VMs slows down the performance by 2% but the frequency of VM
context switching does not impact the performance very much. Fig-
ure 6 also shows the performance for popular processes like fork, exec
and sh. Please note the benchmark lmbench contains lots of context
switches which have to be executed in VMXRootMode. The frequent
Non-Root/Root Mode transitions cause the performance reduction of
’fork’ and ’exec’ processes. However, in the real world, the applica-
tions in the guest VMs do not have so many context switches. Thus,
the real performance of guest VMs inMyClound should be better than
what we have in the experiments.

Context Switching.
We use lmbench [42] to measure the overheads introduced in multi-

process context switching. Figure 7 shows the results of latencies
when running multiple processes in guest VMs. When the number
of processes increases to 16 and the data size transferred within pro-
cesses increases to 64K, we can see the context switching efficiency
based on the results.

0

20%

40%

60%

80%

100%

120%

140%

160%

Pr
oc

es
so

r L
at

en
cy

(%
)

Null Call
Null I/O Stat

Slct TCP
Sig Inst

Fork Proc
Exec Proc

Sh Proc

Integer Operation

Uint64 Operation

Float Operation

Double Operation

No_virt One VM 10ms 20ms Fair Share

Figure 6: CPU latency measurements, measured by lmbench.

0

20

40

60

80

100

120

140

160

180

C
on

te
xt

 S
w

itc
hi

ng
 L

at
en

cy
(%

)

2p/0K
2p/16K

2p/64K
8p/16K

8p/64K
16p/16K

16p/64K

No_virt One VM 10ms 20ms Fair Share

Figure 7: Context switch latencies measurements, measured by lm-
bench.

0

20%

40%

60%

80%

100%

120%

140%

160%

Ke
rn

el
 O

pe
ra

tio
n

La
te

nc
y(

%
)

Create Kernel
Path Kernel

No_virt 10ms 20ms Fair Share One VM

Figure 8: Kernel Operation latencies measurements, measured by
compilebench.

Kernel Operation Performance.
Figure 8 shows the kernel operation performancemeasured byCom-

pilebench under different scheduling algorithms [1]. We found that
the scheduling algorithm can greatly impact the performance. When
there is only one VM, the performance loss is around 21% compared
with the operating system running on the bare metal machine. Kernel
operation performance measurement includes operations of comput-
ing and memory read/write. Clearing up caches and TLBs during each
VM switching is the main cause of overheads. Since one VM will not
cause VM switching, the performance is close to the case without vir-
tualization.

System Bandwidth and Latencies.
Figure 9a and Figure 9b show the results of a comprehensive mea-

surement of system bandwidth and latencies, including file creation
and deletion and virtual memory latencies (Figure 9a) and local com-
munication bandwidth (Figure 9b). From the results we can conclude
that local physical memory access (R/W), File operation and I/O oper-
ation do not have a lot of influence on the guest OS. Besides, the VM
scheduling algorithm has little contribution to the performance loss.

6. SECURITY ANALYSIS

Privacy Protection Interface.
Since malicious system administrators are deprived of the privi-

leges to access users’ privacy, they may try to hijack the hypercall
and change the users’ ACMwhen client VMs aremodifying the ACM.
MyCloud can defeat against this kind of attacks because VM identi-
fiers are managed and checked by the VMM for each hypercall. Fur-
thermore, since this is the only hypercall changing theACM, the attack
surface is very small. In MyCloud, access control specified by Table 1
is precisely and strictly followed.

VM-to-VMM Attack Surface.
In any virtualization system, executions should be intercepted if

they attempt to perform privileged operations. InMyCloud, VMEXIT
happens on a privileged operation or exceptions. Thus, the VMM
needs to interact with the VM frequently due to VMEXITs.
In MyCloud design, TCB size is greatly reduced by excluding the

complicated drivers, management programs and complex scheduling
codes. The control VM is put into the non-rootmode. Currently, the

0

20%

40%

60%

80%

100%

120%

140%

160%
Fi

le
 O

pe
ra

tio
n

La
te

nc
y

0K File Create
0K File Delete

10K File Create

10K File Delete
100fd selct

No_virt One VM 10ms 20ms Fair Share

(a) File and virtual memory latencies

0

20

40

60

80

100

120

140

Ba
nd

w
id

th
(%

)

TCP
File Reread

Mmap Reread
Mem Read

Mem Write

No_virt One VM 10ms 20ms Fair Share

(b) Bandwidth latencies

Figure 9: Latency and bandwidth measurements, measured by lmbench.

TCB of MyCloud is quite small (∼5.8K LOCs in our prototype) and
can be easily verified (recent work has shown the capability to verify
∼8.7K LOCs VMM [34]). As long as the TCB is secure, the privacy
protection is guaranteed.

VM-to-VM Attack Surface.
The security of MyCloud TCB ensures the enforcement of VM iso-

lation. Thus many VM-to-VM attacks are immunized. If a VM at-
tempts to access memory pages that not belong to it, it will be trapped
through an EPT violation exception and handled by the VMM. The
only interface to access other VM’s space is through a hypercall. In
such a situation, MyCloud will check whether the access is authorized
by the pages’ owner or not. In this way, privacy breaching through
memory access can be prevented.
Some may concern that if a VM can launch VM-to-VM Deny-of-

Service (DoS) attacks by causing a lot of unauthorized memory ac-
cesses. This attack forces the VMM to process VMEXITs frequently,
and takes CPU time slices away from the other VMs. Due to this con-
cern, we provide a simple timer based round-robin algorithm to protect
against DoS attacks. The availability is always guaranteed by round-
robin since time slices are fixed for each VM. Alternatively, MyCloud
can defend against it by keeping statistics of VMEXITs (e.g. a large
number of unauthorized memory access with a time period) and quar-
antining such VMs.

Insider Attacks.
In MyCloud design, the cloud provider owns only the control VM

and indirectly manages cloud resource allocation through the interface
provided by the VMM. Note that cloud management tools also rely
on the same set of interfaces provided by the VMM. Any resource
allocation change requested by the control VM will be checked and
handled by the VMM. In this way, the cloud provider cannot stealthily
manipulate the users’ secrets. Moreover, the control VM is not more
privileged than any guest VM. Even if the control VM is compromised
or exploited by inside attackers or malicious codes, the access towards
the resources allocated to guest VMs will be intercepted by MyCloud.

7. DISCUSSION

Secure I/O Workflow.
Since a VM is usually attached to virtual or physical disks, any-

thing stored in those disks can be accessed without the control of the
VM. Thus, it is the user’s responsibility to encrypt sensitive data when
the data needs to be stored into any storage devices. Due to the same
reason, a user should disable operating system swap file or use en-

crypted swap files against attacks to the data on the storage devices.
A VM’s network traffic should be treated in the same way. Since the
cloud provider can always inspect user’s traffic through an intrusion
detection system or network management software, the users should
protect their network traffic through encryption if they have privacy
concerns.

Mutually Trusted Policy.
In MyCloud design, we provided mechanisms for low level access

control but we do not try to provide policies, such as which part of
VM space should be protected. We believe that the policy should be
determined by the cloud provider’s SLA and the clients.
For example, it will benefit the clients if the clients agree to grant

access to the operating system critical data structures to protect the
VM from malicious codes. By this way, the cloud provider can peri-
odically scan the VM’s critical data structures to make sure it is not
compromised and malicious code free. However, such efforts are re-
lated to the previous problems - how to determine the exact boundary
of protection or how we are certain that we are not over-protecting or
under-protecting our sensitive data. We will consider those problems
in our future research.

SMM Attack.
In MyCloud design, any type of physical attacks including SMM

attack is not taken into consideration. SMRAM and SMM registers
are assumed to be protected and set up properly. However, in order
to tamper with the SMM-based attacks, we are designing a specific
BIOS for MyCloud based on SeaBIOS and CoreBoot. The new BIOS
can not only load hypervisor correctly, but also lock the SMRAM by
setting the D_LOCK bit on chipset. Additionally, we remove the re-
dundant codes for booting and initializing process, further reducing
the size of TCB.

Secure Boot & Key Management.
The integrity ofMyCloud platform can be protected in several steps.

During the boot procedure, SRTM based on TPM can be used. Later
on, DRTM such as Intel TXT/MLE technology can be used to verify
the integrity of platform. In order to allow remote users to attest the
integrity of the platform, MyCloud implements a simple key manage-
ment mechanism like CloudVisor [60]. When users create a new VM,
they encrypt the VMkey (KVM) andVM image by a public key of TPM
(KAIK{KVM | VM imange}) so that only MyCloud can decrypt and ver-
ify the VM key. If the VM key is approved, MyCloud will store it in
hypervisor’ memory space in order to ensure that cloud provider can-
not modify the VM key. Then, MyCloud will send the encrypted hash
value of VM image by using the VM key (KVM{Hash(VM image)}to

remote users. Hence, the remote users can authenticate the integrity
of cloud platform.

8. CONCLUSION
In this paper, we propose a new cloud computing platform - My-

Cloud. MyCloud de-privileges the control VM and removes the con-
trol VM from the TCB of the cloud platform. MyCloud enables users
to set up an ACM in the VMM to protect the user’s space. We have
built a prototype system of MyCloud on the x86 platform with accept-
able overheads. The Trusted Computing Base (TCB) of MyCloud is
only around 5.8K LOCs.

9. ACKNOWLEDGEMENT
We thank Yulong Zhang andWuqiong Pan for their discussions and

contributions in the earlier stage of this project. We also thank anony-
mous reviewers for their insightful comments that helped us to greatly
improve the paper. Meng Yu was partially funded by NSF CNS-
1100221 and NSF IIP-1342664. Peng Liu was partially funded by
NSF CNS-0905131, AFOSR W911NF1210055, and ARO W911NF-
09-1-0525 (MURI).

10. REFERENCES
[1] compilebench.

https://oss.oracle.com/~mason/compilebench/.
[2] xenaccess. http://doc.xenaccess.org/.
[3] Advanced Micro Devices. AMD I/O Virtualization Technology

(IOMMU) Specification, February 2009.
[4] Advanced Micro Devices. AMD64 Architecture Programmer’s

Manual Volume 2: System Programming, December 2011.
[5] R. Anderson and M. Kuhn. Tamper resistance-a cautionary

note. In Proceedings of the second Usenix workshop on
electronic commerce, volume 2, pages 1–11, 1996.

[6] A. Azab, P. Ning, and X. Zhang. Sice: a hardware-level
strongly isolated computing environment for x86 multi-core
platforms. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 375–388.
ACM, 2011.

[7] C. Bagh. Sony PlayStation Network attack shows Amazon EC2
a hackers’ paradise, 2011. http:
//www.ibtimes.com/articles/146224/20110516/.

[8] M. Ben-Yehuda, M. Day, Z. Dubitzky, M. Factor, N. Har’El,
A. Gordon, A. Liguori, O. Wasserman, and B. Yassour. The
turtles project: Design and implementation of nested
virtualization. In Proceedings of the 9th USENIX conference
on Operating systems design and implementation, pages 1–6.
USENIX Association, 2010.

[9] E. Biederman. Kernel korner: About linuxbios. Linux J.,
2001(92):7–, Dec. 2001.

[10] S. Bleikertz, A. Kurmus, Z. A. Nagy, and M. Schunter. Secure
cloud maintenance: protecting workloads against insider
attacks. In Proceedings of the 7th ACM Symposium on
Information, Computer and Communications Security,
ASIACCS ’12, pages 83–84, New York, NY, USA, 2012.
ACM.

[11] D. Boneh, G. Segev, and B. Waters. Targeted malleability:
homomorphic encryption for restricted computations. In
Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, ITCS ’12, pages 350–366, New York, NY,
USA, 2012. ACM.

[12] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy.
Self-service cloud computing. In Proceedings of the 2012 ACM

conference on Computer and communications security, CCS
’12, pages 253–264, New York, NY, USA, 2012. ACM.

[13] I.-H. Chuang, S.-H. Li, K.-C. Huang, and Y.-H. Kuo. An
effective privacy protection scheme for cloud computing. In
Advanced Communication Technology (ICACT), 2011 13th
International Conference on, pages 260 –265, feb. 2011.

[14] Coreboot. http://www.coreboot.org.
[15] CVE-2007-4993. Xen guest root escape to dom0 via pygrub.
[16] CVE-2009-1244. Vulnerability in the virtual machine display

function in vmware workstation allows guest os users to
execute arbitrary code on host os.

[17] CVE-2009-1758. The hypervisor callback function in xen, as
applied to the linux kernel 2.6.30-rc4 allows guest user
applications to cause a denial of service of the guest os by
triggering a segmentation fault in certain address ranges.

[18] CVE-2009-2277. Cross-site scripting (xss) vulnerability in
webaccess in vmware allows attackers to inject arbitrary web
script via vectors related to context data.

[19] CVE-2010-0431. Qemu-kvm in redhat enterprise virtualization
(rhev) 2.2 and kvm 83, does not properly validate guest qxl
driver pointers, which allows guest os users to gain privileges
via unspecified vectors.

[20] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee.
Virtuoso: Narrowing the semantic gap in virtual machine
introspection. In Security and Privacy (SP), 2011 IEEE
Symposium on, pages 297 –312, may 2011.

[21] EC2. http://aws.amazon.com/ec2/.
[22] N. Elhage. Virtunoid: Breaking out of kvm, 2011.
[23] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.

Terra: a virtual machine-based platform for trusted computing.
SIGOPS Oper. Syst. Rev., 37(5):193–206, Oct. 2003.

[24] T. Garfinkel, M. Rosenblum, et al. A virtual machine
introspection based architecture for intrusion detection. In Proc.
Network and Distributed Systems Security Symposium, 2003.

[25] G. Heiser, V. Uhlig, and J. LeVasseur. Are virtual-machine
monitors microkernels done right? SIGOPS Oper. Syst. Rev.,
40(1):95–99, Jan. 2006.

[26] Intel Coperation. Intel® trusted execution technology, 2011.
[27] Intel Corporation. Intel® Virtualization Technology

Specification for Directed I/O Specification.
www.intel.com/technology/vt/.

[28] Intel Corporation. Intel® PCI-SIG SR-IOV Primer: An
Introduction to SR-IOV Technology, January 2011.

[29] Intel Inc. Intel® 64 and ia-32 architectures software developer
manuals, 2009.

[30] R. Jhala and R. Majumdar. Software model checking. ACM
Comput. Surv., 41(4):21:1–21:54, Oct. 2009.

[31] B. Kauer, P. Verissimo, and A. Bessani. Recursive virtual
machines for advanced security mechanisms. In Dependable
Systems and Networks Workshops (DSN-W), 2011 IEEE/IFIP
41st International Conference on, pages 117–122. IEEE, 2011.

[32] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. Nohype:
virtualized cloud infrastructure without the virtualization. In
Proceedings of the 37th annual international symposium on
Computer architecture, ISCA ’10, pages 350–361, New York,
NY, USA, 2010. ACM.

[33] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,
M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel4: formal
verification of an os kernel. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles,

SOSP ’09, pages 207–220, New York, NY, USA, 2009. ACM.
[34] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,

P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,
M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel4: formal
verification of an os kernel. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles,
SOSP ’09, pages 207–220, New York, NY, USA, 2009. ACM.

[35] K. Kortchinsky. Cloudburst: Hacking 3d (and breaking out of
vmware). In Black Hat Conference, 2009.

[36] T. Krazit. CNET News. Google fired engineer for privacy
breach. http:
//news.cnet.com/8301-30684_3-20016451-265.html.

[37] B. Krebs. Amazon: Hey Spammers, Get Off My Cloud! http:
//blog.washingtonpost.com/securityfix/2008/07/
amazon_hey_spammers_get_off_my.html.

[38] KVM. http://www.linux-kvm.org/page/Main_Page.
[39] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Computer

meteorology: monitoring compute clouds. In Proceedings of
the 12th conference on Hot topics in operating systems,
HotOS’09, pages 4–4, Berkeley, CA, USA, 2009. USENIX
Association.

[40] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. Trustvisor: Efficient tcb reduction and attestation. In
Proceedings of the 2010 IEEE Symposium on Security and
Privacy, SP ’10, pages 143–158, Washington, DC, USA, 2010.
IEEE Computer Society.

[41] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: an execution infrastructure for tcb
minimization. SIGOPS Oper. Syst. Rev., 42(4):315–328, Apr.
2008.

[42] L. McVoy and C. Staelin. lmbench: portable tools for
performance analysis. In Proceedings of the 1996 annual
conference on USENIX Annual Technical Conference, ATEC
’96, pages 23–23, Berkeley, CA, USA, 1996. USENIX
Association.

[43] K. Z. Meth and J. Satran. Design of the iscsi protocol. In
Proceedings of the 20 th IEEE/11 th NASA Goddard
Conference on Mass Storage Systems and Technologies
(MSS’03), MSS ’03, pages 116–, Washington, DC, USA, 2003.
IEEE Computer Society.

[44] D. Murray, G. Milos, and S. Hand. Improving xen security
through disaggregation. In Proceedings of the fourth ACM
SIGPLAN/SIGOPS international conference on Virtual
execution environments, pages 151–160. ACM, 2008.

[45] A. Nguyen, N. Schear, H. Jung, A. Godiyal, S. King, and
H. Nguyen. Mavmm: Lightweight and purpose built vmm for
malware analysis. In Computer Security Applications
Conference, 2009. ACSAC ’09. Annual, pages 441–450, Dec.

[46] W. Pan, Y. Zhang, M. Yu, and J. Jing. Improving virtualization
security by splitting hypervisor into smaller components. In
N. Cuppens-Boulahia, F. Cuppens, and J. Garcia-Alfaro,
editors, Data and Applications Security and Privacy XXVI,
volume 7371 of Lecture Notes in Computer Science, pages
298–313. Springer Berlin Heidelberg, 2012.

[47] M. Price. The paradox of security in virtual environments.
Computer, 41(11):22 –28, nov. 2008.

[48] Secunia. Vulnerability report: Vmware esx server 3.x.
http://secunia.com/advisories/product/10757/.

[49] Secunia. Xen multiple vulnerability report.
http://secunia.com/advisories/44502/.

[50] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. Reducing tcb

complexity for security-sensitive applications: three case
studies. SIGOPS Oper. Syst. Rev., 40(4):161–174, Apr. 2006.

[51] D. Song, E. Shi, I. Fischer, and U. Shankar. Cloud data
protection for the masses. Computer, 45(1):39–45, 2012.

[52] U. Steinberg and B. Kauer. Nova: a microhypervisor-based
secure virtualization architecture. In Proceedings of the 5th
European conference on Computer systems, EuroSys ’10,
pages 209–222, New York, NY, USA, 2010. ACM.

[53] J. Szefer, E. Keller, R. Lee, and J. Rexford. Eliminating the
hypervisor attack surface for a more secure cloud. In
Proceedings of the 18th ACM conference on Computer and
communications security, pages 401–412. ACM, 2011.

[54] A. Tomlinson. Introduction to the tpm. Smart Cards, Tokens,
Security and Applications, pages 155–172, 2008.

[55] VMware. http://www.vmware.com/.
[56] D. Williams, H. Jamjoom, and H. Weatherspoon. The

xen-blanket: virtualize once, run everywhere. ACM EuroSys,
2012.

[57] R. Wojtczuk and J. Rutkowska. Xen 0wning trilogy. In Black
Hat Conference, 2008.

[58] R. Wojtczuk and J. Rutkowska. Attacking smm memory via
intel cpu cache poisoning. Invisible Things Lab, 2009.

[59] XEN. http://www.xen.org.
[60] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor:

retrofitting protection of virtual machines in multi-tenant cloud
with nested virtualization. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ’11,
pages 203–216, New York, NY, USA, 2011. ACM.

