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Abstract
Virtualization has made cloud computing a popular trend
by virtue of its elastic “data anywhere” and “computing
anywhere”. However, traditional virtualization architectures
usually have three drawbacks: 1) being vulnerable to many
known attacks targeting at the large software stacks; 2) en-
dowing too much power to cloud providers, who can fully
control the Virtual Machine Monitor (VMM) and the man-
agement Virtual Machine (VM); and 3) lacking trusted iso-
lation between VMs.

In this paper, we propose HypeBIOS to provide isola-
tion of VMs based on a verifiable thin virtualization Trusted
Computing Base (TCB). Unlike the traditional architectures,
HypeBIOS excludes unnecessary initialization components
in the boot chain and shifts the control VM (management
VM) out of the TCB. The reduced TCB is further decom-
posed into two layers. The master layer works in the System
Management Mode (SMM) and contains crucial handlers.
The slave layer resides in the legacy virtualization host mode
to cooperate with the master layer. We build a prototype of
HypeBIOS on the x86 platform. The experiments show that
HypeBIOS only introduces moderate overhead.

Categories and Subject Descriptors D.4.6 [Operating
Systems]: Security and Protection; D.4.7 [Operating Sys-
tems]: Organization and Design; D.4.8 [Operating Sys-
tems]: Performance

General Terms Design, Security, Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c⃝ 2013 ACM [to be supplied]. . . $15.00

Keywords Virtualization, TCB Minimization, Decompo-
sition, Isolation

1. Introduction
Cloud computing is becoming a major trend due to its in-
spiring features of elastic “data anywhere” and “computing
anywhere”. Among the cloud services, Infrastructure-as-a-
Service (IaaS) is the most fundamental one, where the cloud
user owns a virtual machine (VM) and purchases virtual
power to execute as needed, just like running a virtual server.
A typical example of commercial IaaS is the Amazon Elastic
Compute Cloud [11] based on the Xen architecture [39].

Cloud providers usually prefer the off-the-shelf virtual-
ization solutions to ease deployment and to lower costs.
However, these traditional virtualization infrastructures usu-
ally have several deficiencies. First, they are vulnerable to
many known attacks targeting at the large software stacks.
Such as the breaking out of VMWare [22] and Xen [36].
Second, they endow too much power to cloud providers, who
can fully control the Virtual Machine Monitor (VMM) and
the management VM. Typically a cloud provider with great
vendor reputation and viability would not intend to filch
users’ secret, as long as it has a rational business foresight.
However, there exist “insider attacks” from the individual
employees of the cloud provider [23]. Finally, the traditional
architectures lack trusted isolation between VMs. Because
the isolation mechanism is often implemented in the large
software stack and at the same time under the direct con-
trol of the cloud providers, it is prone to VMM vulnerability
exploitations and insider attacks described above.

Consequently, despite of the attractive advantages of
cloud computing, many privacy-concerning users still avoid
outsourcing their data and computation to cloud platforms.
In fact, some laws even restrict a business’ freedom to out-
source their sensitive computing to cloud providers [13].
To counteract the emerging threats, we propose the Hype-



BIOS architecture. The primary goal is to construct a mini-
mized and decomposed cloud TCB from scratch and thus en-
able more trusted VM protection, without losing backward-
compatibility, efficiency and flexibility. The main contribu-
tions of this work include:

• We minimize the virtualization TCB by removing redun-
dant procedures from the boot chain. The legacy boot
chain contains many repeated initialization processes. By
cutting off them and integrating the whole virtualization
initialization procedure in BIOS, HypeBIOS reduces the
cloud TCB by an order of magnitude (our prototype has
∼4K LOCs).

• We decompose the minimized TCB into two layers. The
master layer works in SMM and contains crucial han-
dlers. The slave layer remains in the legacy virtualization
host mode to cooperate with the master layer. TCB de-
composition further improves the protection of the cru-
cial components and only exposes the thin slave layer
(about 1K LOCs) as the attacking surface, which eases
verification and attestation.

• We implement a prototype on x86 platform which has
enough flexibility and is easy to keep updated. Despite
the integration of initialization code into BIOS, we do not
program the whole VMM into it. After platform initial-
ization, HypeBIOS will load master/slave layer handlers
from hard drive and relocate them in different areas. Thus
software upgrade does not need re-flashing BIOS and re-
mains flexible.

• We show that the minimization and decomposition de-
sign has good backward compatibility and introduces
moderate performance overhead. With the aid of CPU,
memory and I/O virtualization extensions, unmodified
HVM VMs can be launched on HypeBIOS without sig-
nificant performance downgrade.

The rest of the paper is organized as follows. The related
work and background information is discussed in Section 2
and 3. In Section 4, threat model and assumptions are
described. In Section 5 we discuss the design details, and in
Section 6 we present the implementation and performance
evaluations. We further provide some security analysis in
Section 7 and describe our future work in Section 8. The
paper is concluded in Section 9.

2. Related Work
2.1 Cloud TCB Minimization

The first type of cloud TCB minimization is through VMM
simplification. Designed specially for system execution trac-
ing and malware analysis, MAVMM [31] eliminates unnec-
essary virtualization features commonly found in general
purpose VMMs. Trustvisor [26] is also a specialized VMM
minimizing the TCB so that it can be used for isolation pur-
poses only. Although the simplified VMMs can be extremely

thin (MAVMM contains only ∼3.2K LOCs and Trustvisor
has ∼2K LOCs for its core functions), they can only handle
certain application schemes and neither of the two architec-
tures supports multiple VMs. So they are unsuitable to be
the cloud VMM serving general purposes.

The second type of approaches makes use of hardware
features to minimize TCB size. SICE [6] makes use of x86
System Management Mode (SMM) to enforce strong TCB
isolation. The security of the isolated environments is guar-
anteed by a TCB consists only the hardware, the BIOS, and
SMM program of ∼300 LOCs. However, SICE can only pro-
vide one isolation zone and supports only one VM at one
time, therefore unable to be adopted as a cloud platform
solution. Flicker [27] is a technique leveraging the secure-
execution features of CPUs to provide application level pri-
vacy protection based on a thin and secured TCB. Neverthe-
less, it only offers app-level protection and cannot be utilized
to secure the VMs on cloud.

NoHype [20], as the third type of TCB minimization, dy-
namically eliminates the VMM layer after booting the guest
VMs. The shortage of NoHype is that it has the rigid require-
ment of one-VM-per-core on multi-core processors, and it
requires pre-allocated nested page table. The two require-
ments restrict the number of VMs that can be simultaneously
hosted on the physical platform and decrease the elastic of
cloud computing. They increase the cost of cloud providers
as well. Moreover, NoHype needs to modify the guest kernel
to get rid of memory access outside the region indicated by
the pre-allocated nested page table.

Coreboot [9, 10] can be treated as a promising way for
TCB minimization. It aims at replacing the proprietary BIOS
firmware with a lightweight system designed to perform
only the minimum of initializing tasks, and can directly boot
an ELF image included in the ROM. However coreboot is
just a BIOS design and has no virtualization component.

2.2 Cloud TCB Decomposition

There are some approaches directly dividing VMM into
separated components with different privileges. NOVA [35]
constructs a microkernel-based VMM that is ∼9K LOCs in
size. Despite its thin TCB compared to commodity hypervi-
sors, the complexity of TCB is not markedly decreased since
the microhypervisor is still in charge of complex manage-
ment duties like address space management, interrupt and
exception handling, and communication between the run-
ning workloads. So the thin TCB is still difficult to be se-
cured and verified dynamically. Although seL4 [21] pro-
poses a technique to formally verify a microkernel with
∼8.7K LOCs, it imposes several restrictions on the micro-
kernel functionality. Thus a verifiable microhypervisor re-
mains impractical so far. Other than microkernel-based sys-
tems, VMM Disaggregation [30] also shrinks the TCB size
by moving some VMM components out of the privileged do-
main. However, the TCB size is still too large for dynamic
protection.



There are also some approaches realizing decomposition
with the help of nested virtualization. SplitVisor [32] splits
the traditional VMM into two components according to their
functions: a smaller one as the minimized TCB to enforce
isolation, and a larger one to provide service functionalities.
The problem with SplitVisor is that it requires specialized
guest VMMs, which should be uploaded by cloud users.
Similar to SplitVisor, CloudVisor [40] utilizes nested vir-
tualization to separate TCB from the computing software
stacks. As the host VMM, CloudVisor simply forwards (and
verifies) all the operation and data flows between the guest
VMM and the VMs. But in practice, the operation and data
flows between the guest VMM and its VMs could be very
complicated thus CoudVisor has to allow guest VMM to di-
rectly operate with VM’s sensitive components (e.g. Instruc-
tion Pointer (IP) relocation after VMEXIT handling) . In this
sense, the guest VMM should be considered as a part of the
TCB.

3. Background
3.1 Root of Trust Measurement

The Root of Trust Measurement (RTM) mechanism is com-
monly used to ensure the integrity of TCB, which mainly
relies on the Trusted Platform Module (TPM) chip. Speci-
fied by the Trusted Computing Group (TCG), the TPM chip
can be used to authenticate hardware devices [25]. It can be
found on almost all the motherboards of servers and high-
end PCs. A unique and secret RSA Endorsement Key (EK)
is generated for each TPM at the time of manufacture and
will be permanently sealed inside the chip, and other sen-
sitive data will be stored into shielded memory. A Privacy
CA (Certificate Agency) can authenticate a TPM according
to its public Endorsement Key. The main role of TPM chips
in trusted computing is to act as the Core Root of Trust for
Measurement (CRTM), which measures the integrity metrics
of modules, holds them in Platform Configuration Registers
(PCRs) and reports them in an authenticated way in remote
attestation. For privacy concerns, EK is not allowed to be
used as platform identity directly. Instead, Application Iden-
tity Keys (AIKs) are created to sign these PCR values. A
detailed example to establish TCB with TPM can be found
in Terra model [12]. Note that RTM can be either Static or
Dynamic (SRTM and DRTM, respectively) [18].

3.2 System Management Mode

Both Intel and AMD CPUs support the System Management
Mode (SMM) as one of its operating modes, to handle power
management and other duties. The application of SMM in
TCB protection has gradually become popular [5, 6, 24].
Upon an System Management Interrupt (SMI), the proces-
sor saves its state to a dedicated state save map and switches
to the SMM. As an alternative of sending SMI by software
interrupt, a southbridge timer [2] can trigger SMM automat-
ically and periodically. To return from the SMM, the special

instruction RSM restores the saved processor state and re-
sumes normal execution.

SMM code is loaded by BIOS and is stored in a desig-
nated memory called SMRAM. To provide protection of the
SMM code and data, both AMD and Intel provide the capa-
bility of locking the SMRAM. When the SMRAM is locked,
all accesses to it, except from within the SMM, are prohib-
ited. All interrupts, including non-maskable ones, are dis-
abled upon entering the SMM. Thus, no other code running
on the system can interfere with the SMI handler. Current
hardware can support up to 4 GB of SMRAM.

Note that in Intel’s manual for system developers [16], a
Dual-Monitor Mode is described, which has an “Executive
Monitor” and an “SMM Monitor”. This mode is seemingly
similar to the double-layer architecture in this paper. How-
ever, Dual-Monitor Mode is no more than a complement of
Intel VTx (by serving SMI for VTx VMs). The design pur-
pose and triggering mechanism are actually different from
our work.

4. Threat Model and Assumptions
4.1 Threat Model

HypeBIOS aims at defending against all malicious activities
trying to (locally or remotely) compromise the VMM and
break into users’ privacy.

We assume that once compromised, the root software
stack could be fully controlled by the adversaries. Thus the
adversaries are able to do the following types of attacks:
1) taking over the control of management/control VM of
the cloud provider and then looking into VMs’ memory
and disk; 2) breaking into the management/control VM of
the cloud provider and injecting malicious code into the
VMs; 3) directly exploiting the vulnerabilities of the VMM
(the legacy root software stack with bulk size) and dump-
ing secrets from VMs; 4) as an internal employee, launch-
ing insider-attacks (not physically) to leverage the powerful
management interfaces to steal information.

We do not take internal physical attacks (for example [4])
into consideration, because defending hardware attacks is
out of the scope of our work. Some physical attacks require
special tools like microprobing needles [4]. Even if special
tools are not needed, physical attacks may leave evidences
physically (camera videos or scratches). We assume that the
cloud providers have no motivation to launch such attacks.

4.2 Assumptions

First of all, we take the attacks from insiders into consid-
eration but we assume the overall cloud provider entity is
benign and credible. Second, the platform is physically se-
cure (e.g. monitored by cameras, locked in a safe room, etc.)
so that attacks via physical accesses are not possible. Third,
the platform is equipped with trusted computing hardware,
including the Core Root of Trust Measurement (CRTM) and
Trusted Platform Module (TPM), which allows the attesta-



tion to the integrity of the crucial components in TCB. And
finally, SMRAM cache should not be poisoned. On AMD
platforms, SMRAM cache has already been protected so that
cache-poisoning attacks [37] are immunized. On Intel plat-
forms, however, a proper configuration of the System Man-
agement Range Register (SMRR) [16] is required to ensure
this assumption.

5. HypeBIOS Design
5.1 Design Goals

The primary goal of HypeBIOS is to improve the traditional
cloud architectures by 1) reducing TCB size and decompos-
ing it to provide special protection to the crucial compo-
nents, 2) enforcing VM isolation based on the minimized
and decomposed TCB, and 3) without losing backward-
compatibility, efficiency and flexibility. The detailed design
considerations are listed below.

TCB Minimization and Decomposition The large size
and high complexity of security-sensitive applications and
systems software is a primary cause of poor testability and
high vulnerability [34]. Hence the TCB size of the cloud ar-
chitecture with HypeBIOS should be as small as possible.
However, a small/simple TCB is not sufficient. There should
be a strong protection mechanism to enforce the security
of the TCB. Formal analysis [21] is usually used to verify
the TCB correctness and security properties, and software
model checking [19] can be utilized to verify the implemen-
tation. There are also approaches utilizing hardware based
dynamic measurement to secure TCB, like TrustVisor [26]
and Flicker [27] . All the above protection mechanisms,
however, have restrictions on the TCB size. For example
the recent successful report of formal verification shows the
capability of a general-purpose kernel with ∼8.7K LOCs
[21]. Therefore, we should further decompose the minimized
TCB and only apply protection on the crucial components.

Weakening the Cloud Provider’s Power In order to alle-
viate the concerns of privacy leakage to cloud provider’s in-
ternal employees, the over-powerfulness of cloud providers
should be dealt with. In the current cloud architecture,
Xen [39] for example, the cloud provider occupies the most
privileged domain and handles all the operations with the
authority to look into users’ data and computation. In Hype-
BIOS based architecture, the power of cloud provider should
be limited, as long as it can normally perform cloud re-
sources management (allocation, revoking and migration).

VM Level Isolation We choose the isolation granularity
at the VM level with the same reasons listed by Cloud-
Visor [40]. First, most of the current commercial public
clouds provide the service in the IaaS fashion (e.g. Ama-
zon EC2 [11]). Second, VM is a native and simple abstrac-
tion/encapsulation of privacy for each cloud user. Unlike
protecting processes, protecting VMs does not require han-
dling the complex and subtle semantic gaps. And third, pro-
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Figure 1: HypeBIOS contains an initializer and a double-layer
VMM. Traditional initialization process done by BIOS, bootloader
and VMM is retrenched and merged into the initializer. After ini-
tializing the virtualization environment, the initializer will load the
VMM handlers either from ROM or disk. The master layer will
be put in SMRAM while the slave layer will be located in normal
RAM area. The transition between the double layers is enforced by
a southbridge timer.

tection at the VM level is more likely to preserve backward-
compatibility, without the need of modifying OS kernels and
applications.

Backward-compatibility, Efficiency and Flexibility A
good cloud system solution should require no modification
from cloud users and introduce as less performance over-
head as possible. Besides, if the functionality of the plat-
form needs to be changed, the software components should
be easy to be updated accordingly. No cloud provider would
accept a solution that cannot be flexibly upgraded. That is
why we should not seal the whole TCB into the substrate or
the BIOS, which will be discussed in Section 5.3.

5.2 Overview of HypeBIOS Architecture

The architecture of HypeBIOS is shown in Figure 1. Once
the processor virtualization extension (SVM [3] for AMD
and VMX [16] for Intel) is enabled, CPU will switch be-
tween two modes - guest and host. All the cloud users’ VMs
are executed in the guest mode. The VM kernels reside in
Ring 0 and applications run in Ring 3. All sensitive instruc-
tions will trigger VMEXITs, which should be taken care of
by VMM handlers in the host mode (Ring -1). From a guest
VM’s view, the execution environment has no significant dif-
ference compared with a physical platform.

HypeBIOS differs from the traditional virtualization ar-
chitectures in two aspects. First, HypeBIOS integrates all
the platform initialization code in the BIOS ROM, just like
LinuxBIOS [9]. Traditionally, after power-on, BIOS has to
create interrupt tables, prepare the e820 tables, set up PIC/-
timer/MTRR, initialize PCI devices, probe SMP, and con-
figure the VGA display, etc. This cumbersome process has
to be gone through later by the bootloader and the VMM
again. Although the data structures and the content inside
may be different (for example, BIOS uses Interrupt Vec-



tor Table (IVT) while bootloader and VMM use Interrupt
Descriptor Table (IDT)), the initialization code is quite the
same. Thus HypeBIOS choose to avoid the repetitive op-
erations. On power-on, following some necessary hardware
initialization, the BIOS ROM directly transforms processors
into protected mode with paging, and enables virtualization
extensions. Afterwards the HypeBIOS initializer loads the
VMM handlers either from ROM or from hard drives (for
easy-to-upgrade purpose) into RAM and passes the control
to those handlers.

The second difference is that HypeBIOS relocates VMM
handlers in different memory areas. A double-layer VMM,
consisting of the slave layer in host mode and the Master
Layer in SMM, replaces the legacy VMM. The master layer
will be put in SMRAM while the slave layer will be located
in normal RAM area.

5.3 HypeBIOS Initializer

Some existing approaches adopt Dynamic Root of Trust
Measurement (DRTM) to late launch the VMM (e.g. Cloud-
visor [40]). In this way, platform initialization code can be
removed from TCB. However, DRTM can only ensure the
integrity of VMM during the launching process, and cannot
protect the VMM handlers in a real-time fashion. While for-
mal verification and model checking methods [19, 21] can
help to dynamically verify the TCB, but they have to con-
sume computing power and impose several restrictions on
the target TCB.

HypeBIOS makes use of the native protection mechanism
provided by the hardware, SMRAM, to secure its crucial
handlers. The initialization of SMRAM requires the trust of
BIOS, thus the Static Root of Trust Measurement (SRTM) is
needed. To our knowledge, most of the other SRTM-based
approaches assume that the attacker is unable to violate the
integrity of the booting process (e.g. NOVA [35] explicitly
claims so). However, the boot chain nowadays can be com-
plex and repetitive. For example, GRUB 2 [14] nowadays
contains ∼200K LOCs in total and even GRUB Legacy con-
tains ∼10K LOCs as its core components. Some of the ini-
tialization duties of the bootloader have already be carried
out by the BIOS and will later be covered again by the
VMM. It can largely decrease the TCB size if we merge
them together into the BIOS and remove unnecessary boot
procedures.

The boot process of HypeBIOS is as follows:
ROM stage: On power-on or reset, CPU fetches the in-

struction at 0xFFFFFFF0. At this time, RAM has not been
initialized so HypeBIOS has to execute using cache-as-
RAM. This part is the same with the coreboot [10] boot
block. After some basic CPU initialization operations, Hy-
peBIOS initializes the Front End Bus (FSB) and brings the
RAM online. Then the initializer probes the PCI bridges and
buses and enables all possible devices.

Protected mode and paging enabling: After the ROM
stage HypeBIOS configures the control registers (CR0, CR3

and CR4) to enable protected mode and paging. The rea-
son of enabling protected mode is that virtualization related
instructions are only valid in this mode, and the reason to
enabling paging is that nested paging requires host paging.
The tricky part is that legacy BIOS interrupt handlers work
in real mode, so mode transition is needed to call software
interrupts before GDT and IDT are initialized.

Basic platform configuration: Now it is time to do pe-
ripheral configurations, including PIC, timer, MTRR and
PCI devices. The southbridge should be carefully config-
ured so that SMM can work properly later with timer trig-
gering. The details will be introduced in Section 5.4. TPM
chip should also be initialized in this stage.

APIC and virtualization enabling: This is the most im-
port step for HypeBIOS. The processor virtualization ex-
tension (SVM/VMX) is enabled. Specially, HypeBIOS cre-
ates a nested page table and a page-access-control table. The
page-access-control table marks the owner (VM) and access
attributes (R/W) for every page. IOAPIC as well as LAPIC
are also configured in this step.

SMP preparation: The above procedures are handled
by the Boot Strap Processor. To enable the full function of
the cloud platform, the BSP needs to further bring other
cores/processors online and enable protected mode/pag-
ing/virtualization for them.

Other initializing work: This part contains VGA/serial
console initialization and other hardware preparation work.
For conciseness the details are omitted.

Loading double-layer handlers: Finally, the platform
is ready for the VMM handlers. HypeBIOS loads them ei-
ther from the ROM or the disk and measures the integrity of
them. The measurement value is extended to the TPM Plat-
form Configuration Register (PCR). After that, the master
layer is relocated into SMRAM and the slave layer is relo-
cated in normal memory area. In the end, SMRAM should be
set as locked to avoid tampering, and the platform is handed
over to the double-layer VMM handlers.

Because the initializing code in the ROM is executed
only once during the boot, and service-oriented changes only
impact the VMM handlers, which can be loaded from disk,
the integration of BIOS, bootloader and VMM initializer as
above would not hurt the flexibility to upgrade HypeBIOS.

After the integration, the boot chain is significantly re-
trenched. As shown in Figure 2, the TCB size of HypeBIOS
is extremely thin compared to other approaches. We note that
integration is not the only reason of HypeBIOS’s extremely
thin TCB. The utilization of hardware I/O virtualization sup-
port also contribute to TCB minimization, which will be dis-
cussed in Section 5.6.

5.4 The Decomposed Double-layer VMM

Although the integration of HypeBIOS initializer has signifi-
cantly reduced the TCB size, an effective and efficient mech-
anism is still needed to dynamically ensure the security of
the TCB. Thus we further decompose the TCB into two lay-
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ers, a master layer and a slave layer. The slave layer replaces
the legacy VMM to intercept the execution of the VMs, and
passes the crucial VMEXIT handling (such as nested page
fault) to the master layer, as shown in Figure 1 and Figure 3.
On receiving the requests, the master layer firstly checks if
the VMEXIT violates the access control rules as specified in
the page-access-control table (Figure 4), and then processes
it. If no error detected, the master layer will return control
back to the slave layer.

Figure 4 is an example of the page-access-control table.
Sn in the figure means “shared to VMn” and Pn means
“privacy of VMn”. The areas of the master and slave layers
are marked as SMRAM and P (global privacy) respectively.
The region of initializer (BIOS) is marked as read-only.

It is worth noting that the transition from the slave layer to
the master layer is not though calling software SMI. Once an
SMI is sent, all CPU cores will be forced into SMM, which
could be a fuse of Deny-of-Service (DOS) attacks. Besides,
it costs CPU powers to call SMI frequently. Consequently,
HypeBIOS configures the southbridge to mask the software
SMI and trigger SMM by a southbridge timer [2]. With the
help of this timer, the SMM is triggered periodically, and the
system control is automatically passed from the slave layer
to master layer (Figure 1). Ideally, master layer processes
all the VMEXITs, but for performance optimization, not all
of the VMEXITs should be passed into SMM to process.
Only those suspected as privacy-breaching (e.g. memory
probing from one VM to another) are necessarily delivered
to the master layer. The interval of the timer-based transition

VM1 VM2

S2 P1 S1 S3P2 SMRAM

master slave init

P R

Figure 4: Page-access-control table maintained by the master layer.
Each entry is corresponding to a page in memory.

will be discussed in Section 6, which slightly impacts the
performance.

Residing in the SMRAM, the master layer (∼3K LOCs)
is well protected and cannot be accessed from the software
stacks in the protected mode. The only interface to access the
master layer is via the slave layer. So the slave layer (∼ 1K
LOCs) is the only TCB component that should be verified
online. The idea of TCB decomposition thus makes the thin
TCB even easier to perform integrity checking (a recent
successful report of formal verification shows the capability
of a general-purpose kernel with ∼8.7K LOCs [21] .

5.5 Secure Boot

On system power-on or reset, the TPM chip is initialized.
It then measures the Core Root of Trust for Measurement
(CRTM) in BIOS boot block, which will further measures
the SMM handlers (HypeBIOS master layer) that will be
written into SMRAM. All the measurement results will be
extended into the Platform Configuration Register (PCR).
Then the initializer copies HypeBIOS master layer code into
the SMRAM and temporarily trigger SMM by calling SMI.
The boot code of master layer will generate a fresh asym-
metric key-pair (KPub

SMM , KPri
SMM ), and extend the public key

information into the PCR. Later all the cloud users can eas-
ily obtain this public key from TPM. The private key is kept
in SMRAM and will never be touched from outside. After-
wards, the master layer will resume to protected mode and
pass the control back to HypeBIOS initializer and continue
the normal boot procedure, getting the slave layer loaded.

All the users on the platform are able to request for attes-
tation at any time. Because the platform is shared by multi-
ple tenants, the TPM architecture can be realized using the
vTPM fashion [8]. The attestation procedure of the platform
is described as follows:

(1) On receipt of a request for attestation challenge, the
TPM chip will respond with the public Attestation Iden-
tity Key (AIKPub) and the certified public Endorsement Key
(EKPub). The challengers can further validate the certifica-
tion of the EKPub by forwarding the keys to the Privacy
CA [25].

(2) If the certification of the EKPub is valid, the Privacy
CA signs a certificate for AIKPub, and encrypts the certifi-
cate with a newly created session key SKPCA. Along with
them, SKPCA and AIKPub, encrypted by EKPub, are alto-
gether sent back to the challenger. The challenger then de-
liver the second blob to the TPM chip.

(3) Once received them, the HypeBIOS TPM decrypts
the SKPCA and AIKPub using its EKPri, and checks if the
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Figure 5: Memory and I/O management in HypeBIOS.

AIKPub matches with the one it owns. If everything goes
well, the HypeBIOS releases the session key SKPCA.

(4) With the session key, the challenger can obtain the
signed certificate of AIKPub. Now that AIKPub is authenti-
cated, the user can generate a random number n to perform
the real-time platform attestation by asking for the signed
PCR value along with this one-time random number.

(5) The TPM chip should reply with the Stored Mea-
surement Log (SML, containing the BIOS, MBR and VMM
measurement fingerprints as well as the public key of SMM
handlers, KPub

SMM ), along with the PCR value and the ran-
dom number signed by AIKPub. Upon receiving them, the
challenger first of all check if n is correct, and then apply-
ing the PCR’s extend operation on SML (to see if it is the
same with the received PCR value). If everything matches,
and the platform measurement fingerprints in SML satisfy-
ing the challenger’s requirement, the attestation is finished
with success and the KPub

SMM can be confidently used later in
authentication or key exchange.

5.6 Memory and Device Virtualization

Both Intel and AMD have extended two-layer address trans-
lation to three-layer address translation (nested paging). The
guest page table (gPT) specified by CR3 register in guest
VM is responsible for translating guest virtual addresses
(GVA) to guest physical addresses (GPA). A new table called
nested page table (nPT) controlled by the VMM is responsi-
ble for translating GPA to machine frame number (HPA).
The address of nPT is specified by nCR3, described by
a VMCS/VMCB field. As shown in Figure 5, HypeBIOS
(mainly the master layer) maintains the nPT and MMU will
automatically translate guest physical address to machine
address. Once set up, the memory translation process will
be automatically done by MMU and no interaction with the
virtualization software is necessary. The master layer will
only be called for nPT updating when a nested page fault
happens. But, again, the host physical address is guarded by
the page-access-control table. The master layer will not ac-
knowledge any memory access attempts.

Except for memory translation, I/O management is an-
other important issue to be considered. HypeBIOS fully
makes use of the hardware extensions for virtualization, in-
cluding IOMMU (VTd [15] for Intel and AMD-Vi [1] for

AMD) and SR-IOV [17], to minimize the TCB size. The
input/output memory management unit (IOMMU) connects
a DMA-capable I/O bus to the main memory. Like a tradi-
tional MMU, which translates CPU-visible virtual addresses
to physical addresses, the IOMMU takes care of mapping
device-visible virtual addresses (also called device addresses
or I/O addresses in this context) to physical addresses. With
the help of IOMMU, devices can be directly assigned to
VMs. This kind of direct assignment of devices provides
very fast I/O and eliminated drivers from VMM. However,
it prevents the sharing of I/O devices. To solve this problem,
peripheral devices start to support SR-IOV, which provides
a mechanism by which a Single Root Function can appear
to be multiple separate physical devices, called virtual func-
tions (VFs). As shown in Figure 5, the Ethernet adaptor on
HypeBIOS platform is configured to appear in the PCI con-
figuration space as multiple functions. The slave layer can
assign different VFs to different VMs.

For a device that does not support virtualization, like hard
drives, there are two solutions. First, cloud users can mount
iSCSI disks [29]. Second, HypeBIOS can redirect the disk
I/O requests to the control VM, who controls the local disk.
However, this solution exposes users’ data to cloud provider,
so I/O encryption is required for it.

5.7 Scheduling

To simplify the system design, HypeBIOS directly supports
two modes of VM scheduling, one-VM-per-core or round-
robin. In the case of one-VM-per-core, the situation is simi-
lar to NoHype [20]. Every VM occupies a unique CPU core
and thus a unique LAPIC. The good side of doing so is
that the scheduling code can be extremely simple and it is
difficult for side-channel attack [33] to succeed. However,
dedicating cores to VMs restricts the dynamic resource al-
location in cloud computing, and increases the cost of cloud
providers.

An alternative to one-VM-per-core solution is the round-
robin scheduling algorithms, which is not complicated ei-
ther. VMs assigned on the same core will share the CPU time
equally. If a VM is in the waiting-for-VMEXIT-handling
state, the scheduler will simply pass it and dispatch the next
available VM.

By intercepting VMLOAD/VMRUN/VMSAVE, Hype-
BIOS has supported nested virtualization on AMD plat-
forms. This indirectly introduces the third scheduling mech-
anism - scheduling by the guest VMM. On intercepting vir-
tualization instructions launched by the guest VMM, Hype-
BIOS will make changes to corresponding VMs on behalf
of it. In this way, HypeBIOS can operate with complicated
scheduling algorithms without actually implementing them.

5.8 Cloud Management

Unlike the traditional architectures, the cloud provider only
controls the unpriviledged control VM in HypeBIOS de-
sign. The control VM is responsible for resource manage-



ment. The management work is indirect and should be done
through the interface provided by the slave layer. Currently
HypeBIOS follows the design of Xen, by assigning the soft-
ware interrupt 0x82 as the hypercall interface. Any requests
from the control VM will be captured by the slave layer and
further sanitized by the master layer. Any resources alloca-
tion changes requested by the control VM will be logged and
the impacted VMs will be notified (if they install a special
driver). In this way, the cloud provider cannot stealthily ma-
nipulate users’ secrets.

To create a VM, HypeBIOS will allocate the resources
according to the request from the control VM. The cloud
user can remotely attest the platform as described in 5.5,
and send session key to HypeBIOS encrypted by KPub

SMM .
Afterwards the cloud user can upload an image along with
the hash value encrypted by the session key. If HypeBIOS
can successfully verify the image, it will launch the VM until
a destroy request is received.

If the resources allocated to a cloud user are expired or
no longer needed, HypeBIOS will destroy the data first, and
then mark them as allocate-able to the control VM. There is
an argument upon whether the control VM should be able
to forcibly re-collect guest VMs memory pages. If this is
allowed, a compromised control VM may be a huge threat
to the whole platform. Although HypeBIOS can clean all
the content in the re-collected memory pages, the effects due
to missing pages would still leak side-channel information
to the control VM. However, if the forcibly re-collection is
not allowed, cloud providers may have a lot of troubles if
they are not willing to continue providing service to some
VMs. There is no way to find out an ultimate solution to
this argument. If we want to satisfy the users’ desire of
privacy, we must sacrifice the power of cloud providers. In
our prototype, we make the trade off to disable forcibly re-
collection of memory but keep charging the users who do
not give up the resources.

Since the control VM’s memory access is also enforced
by the page-access-control table and any privileged CPU or
I/O instructions will be captured and checked by the double-
layer VMM, it is impossible for cloud provider’s internal
employees to launch insider-attacks.

6. Implementation and Performance
Our prototype is built on the hardware platform with an
AMD Athlon II X2 260 processor, one-dimm 2GB RAM,
ASUS M5A88-V motherboard (northbridge: AMD RS880,
southbridge: AMD SB850), and 2MB BIOS. We utilize
AMD SVM to enable hardware based virtualization, and
build the prototype based on the open source BIOS project,
coreboot [10] (formally known as LinuxBIOS). The version
of the coreboot code that we build our prototype with is 4.0.
Note that we only use code in coreboot to perform the neces-
sary hardware probing and initialization. Our prototype adds
∼3K lines of code as the HypeBIOS initializer.

For performance evaluation, we boot Ubuntu 8.04 Linux
as the VM, with one CPU core (dedicated) and 512 megabytes
memory (nested paging enabled). Because the northbridge
of our evaluation platform does not support IOMMU, we
simply directly assign the Ethernet adapter and local disk to
the VM, without the interception of I/O flows. This is not
a big issue since we only test on one VM. For real-world
cloud computing, an IOMMU is required to support device
sharing among multiple VMs.

To investigate the performance impact due to TCB mini-
mization and decomposition, as well as the overhead intro-
duced by the timer-based double layer mode switching, we
evaluate the platform under five configurations:

1. Booting the Linux by coreboot without virtualization. We
configure the boot options so that the Linux only uses
one core and 512MB memory (labelled as“No virt” in
the following figures).

2. Loading the Linux with virtualization. In this case we
do not decompose the TCB. Both the master and slave
layers are relocated in normal memory areas and they
communicate directly without SMM triggering (labelled
as “No dec” in the following figures).

3. Loading the Linux with HypeBIOS and configuring the
mode transition interval as 50 ms (labelled as “50ms” in
the following figures).

4. Loading the Linux with HypeBIOS and configuring the
mode transition interval as 1 ms (labelled as “1ms” in the
following figures).

5. Loading the Linux with HypeBIOS and configuring the
mode transition interval as 500 µs (labelled as “0.5ms” in
the following figures).

A series of performance evaluations are carried out as
follows. The values obtained from the second test case is
treated as the reference (with virtualization but without de-
composition) because most of the cloud solutions adopt this
system model. Testing results obtained from other configu-
rations can be normalized according this test case (Figure 6,
7 and 9).

6.1 Common System Tasks

The first measurement is to uncompress the official Linux
kernel linux-2.6.27.62.tar.bz2, which is 50.4MB in size, fol-
lowed by the kernel compilation with the minimum configu-
ration (“allnoconfig”). The wall-clock time is measured and
results are shown in Figure 6. The “virtualization without
decomposition” case has already caused a 20% performance
downgrade compared to the “no virtualization” case. Ac-
cording to the gathered VMEXIT statistics, this is because
of a large number of page faults (exit code 0x4E). When the
timer-based mode transition is introduced in the system, the
performance slightly goes down. Even if we rapidly trigger
SMM, the downgrade is within 25%.
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Figure 6: Kernel building, uncompressing and Apache benchmark-
ing results of HypeBIOS.

Another commonly used assessment is the Apache bench-
marking. We send 100 number of requests with the concur-
rency number as 20 to the Linux web server and measures
the average delay. From the results (Figure 6) we can find
that Apache service is insensitive to virtualization but sen-
sitive to SMM mode transition. The increment of the delay
has an exponential trend.

6.2 CPU computing performance

Except for web services, cloud users also tend to outsource
computing to cloud VMs. Thus the measurement of CPU
computing efficiency is important. In this measurement, the
operations of addition, multiplication and division are eval-
uated upon 32 bit integer, 64 bit integer, float number and
double numbers, as shown in Figure 7. Again, the enabling
of virtualization lows down the performance by 20% but
the frequency of mode transition does not impact the per-
formance quite much.

Another benefit of imposing little overhead to CPU com-
puting efficiency is that the cloud users’ encryption/decryp-
tion performance will not be greatly impacted. Some heavy-
duty workload such as encrypted disk I/O can still be con-
sidered a good complement to HypeBIOS.

6.3 Context Switching Efficiency

We make use of lmbench [28] to measure the overhead intro-
duced in multi-process context switching. The same obser-
vation can be drawn that the performance downgrade due to
the mode transition is smaller than the overhead of virtual-
ization. However, when the number of processes increases to
8 and the data size transferred within processes increases to
64K, we can see an apparent effect on the context switching
efficiency. We may set this as part of our future work to op-
timize the multi-process (and multi-VM) context switching
performance.

6.4 System Bandwidth and Latencies

Figure 9 shows the results of a comprehensive measure-
ment of system bandwidth and latencies, including file cre-
ating/deleting and virtual memory latencies (Figure 9a), lo-
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Figure 8: Context switching efficiency. The X-axis tick labels de-
scribe the process number of data size transferred between pro-
cesses. Data are gathered using lmbench [28].

cal and remote communication bandwidth (Figure 9b), and
cache/memory access latencies (Figure 9c). From the results
we can conclude that TCB decomposition and mode tran-
sition do not impact the latencies and bandwidth related to
physical access (R/W for cache and memory) too much but
do have some influence on the virtual layers (e.g. paging and
file system). However, the overhead (mostly under 25%) is
totally acceptable.

7. Security Analysis
VM-to-VMM Attack Surface In any virtualization sys-
tems, executions should be intercepted if they attempt to per-
form privileged operations. For full-virtualization, VMEXIT
happens on a privileged operation, while for para-virtualization
hypercall replaces VMEXIT. No matter what kind of in-
terception mechanisms the system adopts, the VMM must
interact with the VM frequently, and thus leave its large
software stack under attacks.

In HypeBIOS design, TCB size is largely reduced: those
complicated drivers, management programs, and complex
scheduling codes are all excluded from the TCB. In addition,
we retrench and merge all the platform initialization code of
BIOS, bootloader and VMM into the BIOS ROM. To make
the system even more secure, we decompose the VMM into
double layers. The slave layer lies in the legacy host mode
to perform normal operations while the master layer resides
in the SMRAM to carry out privacy-crucial executions. In
this way, half of the TCB is under the native protection of
hardware and is immune to both CPU stream access and
Direct Memory Access (DMA). The only attack surface is
the slave layer left outside. Due to decomposition, the slave
layer can be quite small (∼1K LOCs in our prototype) and
can be easily verified (recent work has shown the capability
to verify ∼8.7K LOCs VMM [21]). As long as the outside
TCB component is secured, the interface towards the master
layer is well guarded.

There exist some attacks poisoning SMRAM via cache
on Intel’s platforms [36]. However, the protection of SM-
RAM is out of the scope of our work. Actually, Intel has
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Figure 7: CPU computing performance evaluation, including the operations of addition, multiplication and division upon 32 bit integer, 64
bit integer, float number and double numbers
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Figure 9: Latency and bandwidth measurements, measured by lmbench [28].

published patches to resolve the currently known SMM at-
tacks so far. Moreover, a proper configuration of the System
Management Range Register (SMRR) [16] can clear up this
problem nowadays. On AMD platforms, SMRAM cache has
already been protected so that cache-poisoning attacks [37]
are immunized.

VM-to-VM Attack Surface The security of HypeBIOS
TCB ensues the enforcement of VM isolation. Thus many
VM-to-VM attacks are immunized. Every sensitive instruc-
tion will be verified by the master layer, according to the
page-access-control table. If a VM attempts to access mem-
ory pages not belonging to it, HypeBIOS will check whether
this access has been authorized by the pages’ owner or not.
In this way, privacy breaching through memory access can
be prevented.

Some may concern that if a VM can launch VM-to-
VM Deny-Of-Service (DOS) attacks by causing a lot of
unauthorized memory accesses that forces the master layer
to process VMEXITs frequently, and takes CPU time slices
away from the slave layer and other VMs. However, the

handling of VMEXITs is very quick (Xen can deal with
105 VMEXITs per second), so it would not be a big issue
if a mass of VMEXITs come to the master layer. Even if
the problem exists, HypeBIOS can still defend against it
by recording the VM abnormally causing VMEXITs (e.g.
with a large number of unauthorized memory access) and
quarantining it.

Insider Attack Surface In HypeBIOS design, the cloud
provider owns only the control VM and indirectly manages
cloud resource allocation through the interface provided by
the slave layer. Any resources allocation changes requested
by the control VM will be logged and the impacted VMs will
be notified (a dedicated driver is needed). In this way, the
cloud provider cannot stealthily manipulate users’ secrets.
Moreover, the control VM is not more privileged than any
normal guest VMs. Even if the control VM is compromised
or exploited by inside attackers, the access towards the re-
sources allocated to the other VMs will be intercepted by
HypeBIOS.



Under the enforcement of the page-access-control ta-
ble, the only way to access the guests’ resources for cloud
provider is to map them as “shared with the control VM”.
However, this operation can only be done on the request of
the pages’ owner.

8. Discussion and Future Work
There could be a lot of extensions and improvements to
HypeBIOS. Our future work will include but may not be
limited to:

Nested Virtualization with HypeBIOS We have already
supported trap-and-emulation for AMD VMLOAD/VM-
RUN/VMSAVE instructions. Thus nested virtualization with
HypeBIOS on AMD platforms are now possible. However,
due to the experiment platform limitation (our RS880 north-
brige chip does not support IOMMU), we have not imple-
mented the nested virtualization prototype. We will develop
such kind of system in our future work.

Extending HypeBIOS Archiecture to Other Modes The
HypeBIOS architecture is not limited to platforms with
SMM. What we present here is the idea of TCB mini-
mization and decomposition. Based on this philosophy, Hy-
peBIOS can have many other variants to satisfy different
goals. For example, Intel’s TXT technology and its Mea-
sured Launched Environment (MLE) [18] can be a good
candidate to replace SMM. MLE has two memory regions
that are protected from malicious breaching: DRAM Pro-
tected Range (DPR) and Directed I/O Protected Memory Re-
gions (PMRs). By relocating the master layer into the TXT
measured memory regions, we can guarantee the safety of
HypeBIOS from DMA attacks and can measure its integrity
periodically. In this way, the crucial software components
are under protection without a high performance overhead
to measure the whole TCB. We have started to port SMM
based HypeBIOS prototype to MLE and we will publish the
evaluations in future papers.

According to a recent interview of Intel’s CTO, Justin
Rattner, Intel has strived to explore a “stealth” mode to
provide securely processing [38]. In the long term, there
should be a general-purpose solution. We need an architec-
tural breakthrough which allows an open platform to selec-
tively and programmatically become closed during a secure
computational phase. With the architecture proposed by In-
tel, HypeBIOS can reside in the stealth mode, being waken
up for brief periods of time, and then come back into the
open. Our future effort will follow this direction once Intel
publishes the “stealth” mode.

HypeBIOS as A Neutral Agent Privacy protection has
motivated many approaches coming into being to keep cloud
users’ secrets away from the cloud provider. Nevertheless,
there is a compelling reason for cloud provider to monitor
its users: to ensure the “law-abiding” of the whole cloud
platform. Without the ability to monitor the users, the cloud

provider cannot prevent the VMs to be malicious tools. It
has been reported that the attackers can utilize Amazon EC2
instances to attack other VMs on the same physical node via
the cache side channel [33]. And the famous Sony PlaySta-
tion Network attack has shown Amazon EC2 as a hackers’
paradise [7]. Consequently, simply depriving the capability
of monitoring cloud users from the cloud provider is not a
perfect solution. Fortunately, as a neutral agent in the ar-
chitecture, HypeBIOS can shoulder this big beam. Without
leaking users’ privacy to the cloud provider while sensing
the users’ computation and data based on the security poli-
cies provided by the cloud provider, HypeBIOS is able serve
the purpose well.

9. Conclusion
In this paper, we propose HypeBIOS to enforce isolation of
VMs based on a verifiable thin virtualization Trusted Com-
puting Base (TCB). Unlike the traditional architectures, Hy-
peBIOS excludes the unnecessary initialization components
in the boot chain and shifts the control VM (management
VM) out of the TCB. The reduced TCB is further decom-
posed into two layers. The master layer works in the System
Management Mode (SMM) and contains crucial handlers.
The slave layer resides in the legacy virtualization host mode
to cooperate with the master layer. We build a prototype of
HypeBIOS on the x86 platform with moderate slowdown.
HypeBIOS is not only an effective solution for cloud TCB
securing but also a promising way to alleviate other cloud
problems.
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